Ice-sheet contributions to future sea-level change.
نویسندگان
چکیده
Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5+/-0.9K in Greenland and 3.1+/-0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.
منابع مشابه
An expert judgement assessment of future sea level rise from the ice sheets
A major gap in predictive capability concerning the future evolution of the ice sheets was identified in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change. As a consequence, it has been suggested that the AR4 estimates of future sea-level rise from this source may have been underestimated. Various approaches for addressing this problem have been tried, includin...
متن کاملPaleoclimatic evidence for future ice-sheet instability and rapid sea-level rise.
Sea-level rise from melting of polar ice sheets is one of the largest potential threats of future climate change. Polar warming by the year 2100 may reach levels similar to those of 130,000 to 127,000 years ago that were associated with sea levels several meters above modern levels; both the Greenland Ice Sheet and portions of the Antarctic Ice Sheet may be vulnerable. The record of past ice-sh...
متن کاملComputing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200
The contribution to sea level to 2200 from the grounded, mainland Antarctic Peninsula ice sheet (APIS) was calculated using an ice-sheet model initialized with a new technique computing ice fluxes based on observed surface velocities, altimetry and surface mass balance, and computing volume response using a linearized method. Volume change estimates of the APIS resulting from surface massbalanc...
متن کاملEffect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet
We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections ar...
متن کاملIce-sheet and sea-level changes.
Future sea-level rise is an important issue related to the continuing buildup of atmospheric greenhouse gas concentrations. The Greenland and Antarctic ice sheets, with the potential to raise sea level approximately 70 meters if completely melted, dominate uncertainties in projected sea-level change. Freshwater fluxes from these ice sheets also may affect oceanic circulation, contributing to cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 364 1844 شماره
صفحات -
تاریخ انتشار 2006